Archív bejegyzések - április, 2019

A szója nélkülözhetetlen a modern, intenzív állattartás számára, emellett humán táplálékként is jelentős növényünk. Hazánkban is fellelhetők a szójából készült különböző élelmiszeripari termékek (pl. tofu, szójatej, olaj, szójaliszt, szójaizolátum, szójakoncentrátum, extrudált termékek, húsanalógok, texturált szójaféleségek stb.). Mind takarmányozási, mind élelmiszeripari szempontból fontos a szója minősége

A szója takarmányozási és humán felhasználási értékét kedvező beltartalma adja. A szója nyersfehérje-tartalma 35-42%, olajtartalma 18-22%, szénhidráttartalma 30-35%, szárazanyag-tartalomra vonatkoztatva. A szójabab rendkívül koncentrált tápanyagforrás, a nyersfehérje-tartalom és az olajtartalom együttesen 55-60% körüli. A fehérje- és olajtartalom együttes százalékos arányát a PO-index fejezi ki, és cél, hogy ennek értéke legalább 60% legyen. A szójabab nyersrosttartalma 3,8-6,4% között változik, aminek 25-50%-a emészthető. A szója értékét elsősorban magas fehérjetartalma és kedvező aminosav-összetétele adja. A növények között a szója tartalmazza a legtöbb esszenciális aminosavat. A szójafehérjék közül a globulinok (60-70%) és az albuminok (57%) fordulnak elő a legnagyobb mennyiségben. Aminosavak közül kiemelkedő a szója glutaminsav-tartalma, magas a leucin és izoleucin-, valamint jelentős az aszparaginsav-, arginin- és lizintartalma is.

Az esszenciális aminosavak közül a szója metionin-, cisztin- és a treonintartalma is számottevő. A szóját nagy olajtartalma miatt világszerte az olajnövények közé sorolják. A világ növényiolaj-felhasználásának kb. 30%-a szója eredetű. Az 1920-30-as években az USA-ban a szója „karrierje” is a szójababot feldolgozó olajütők létesítésével indult. A szója olaja sokoldalúan felhasználható, kiváló minőségű étolaj, valamint ipari felhasználásra is alkalmas. Felhasználható lakk, zománc- és nyomdafesték készítésére, bőrök kikészítésére, valamint szappan-, műanyag-, linóleum- és gliceringyártásra is. A szójabab olajtartalma fajtától és termesztési körülményektől függően 15-26% között változik. A szójaolaj a félig száradó olajok csoportjába tartozik. Kedvező fizikai és kémiai sajátosságai miatt széleskörű a felhasználása. A szójaolajnak magas a kedvező étrendi hatással bíró telítetlen zsírsav-tartalma, ezen belül a két telítetlen kettős kötést tartalmazó linolsav- (50% feletti arány) és a három telítetlen kettős kötést tartalmazó linolénsav- (10% feletti) tartalma jelentős. A szójának 2-3% körüli a lecitintartalma. A lecitin az egyik legfontosabb természetes felületaktív anyag. Felhasználják az élelmiszeriparban, a gyógyszeriparban és a vegyiparban stabilizáló és emulgeáló hatása miatt. Emellett antioxidáns hatása is kedvező. A szója amellett, hogy kalóriadús táplálék, többféle vitamin és biológiailag aktív vegyület (pl. fitoszterinek) forrása. Vitaminok közül kiemelkedő az A-, az E-, a K-, a B6-, a B12- és a niacintartalma. A szójabab gazdag ásványi anyagokban. Ásványi anyagok közül nagyobb mennyiségben tartalmaz magnéziumot, kalciumot, foszfort, valamint nem elhanyagolható a szeléntartalma sem.

A szója beltartalmi értéke mellett meg kell említeni azokat a vegyületeket is, amelyek takarmányozási vagy táplálkozás-élettani szempontból hátrányosak. A szója viszonylag nagy mennyiségben tartalmaz antinutritív anyagokat. Az antinutritív anyagok a táplálék tápanyagainak érvényesülését rontják, a növekedést, súlygyarapodást lassítják. A szójában a legfontosabb antinutritív anyag a tripszin inhibitor, amely a fehérjék emésztésében szerepet játszó tripszin nevű enzim működését gátolja, aminek következtében csökken a fehérje emészthetősége. A tripszin inhibitor hőre érzékeny, a szójabab hőkezelésével ezek a vegyületek inaktiválódnak. Nemesítési célkitűzés, hogy olyan szójafajtákat állítsanak elő a nemesítők, amelyeknek tripszininhibitor-tartalma alacsony, és hőkezelés nélkül, nyersen is etethetők állatokkal. A nyugalmi állapotban lévő szójabab kémiai összetétele örökletesen meghatározott tulajdonság, fajtajelleg, azonban az egyes minőséget meghatározó beltartalmi komponensek mennyiségét és egymáshoz viszonyított arányát a termesztési körülmények és az alkalmazott agrotechnika befolyásolja. Különösen a magvak fehérje- és olajtartalma mutat változást eltérő termesztési körülmények mellett. A szója minőségét az évjárat és a talajtípus alapvetően meghatározza. A szója melegigényes növény, és érzékenyen reagál a csapadékhiányra és a levegő alacsony relatív páratartalmára. A virágzáskori, júniusi csapadékellátottság a fehérjetartalom alakulására kedvező hatású, azonban a szója fehérjetartalmát az érés idejében fellépő bőséges csapadékellátottság vagy öntözés általában csökkenti. Kedvezőtlen a fehérjetartalom alakulására az érés vége felé, a betakarítást megelőzően jellemző magas relatív páratartalom. Érés idején a hőmérséklet növekedése viszont kedvező hatású a fehérjetartalom alakulására. A nyári (júniusi, júliusi) csapadékmennyiség növekedésével az olajtartalom kismértékben csökkenhet.

Az augusztusi magas hőmérséklet és szárazság a termésmennyiségen túlmenően a minőségre is kedvezőtlen hatású. A szójamag fehérje- és olajtartalmának alakulására a tápanyagellátásnak van a legnagyobb szerepe. A minőség szempontjából is fontos a harmonikus NPK-ellátás. Optimális tápanyagellátás mellett a fehérjetartalom kismértékben növelhető, az olajtartalom kismértékben csökken. Az egyoldalú N-ellátás a fehérjetartalmat szembetűnően növeli, mérsékelt N-ellátás és nagyobb adagú P- és K-ellátás mellett a fehérjetartalom csökken, az olajtartalom növekszik. A túlzott és egyoldalú tápanyagellátás sem a termés mennyisége, sem a stabilitása, sem a minőség szempontjából nem célravezető. 2018-ban Debrecen mellett kiváló tápanyag- és vízgazdálkodási tulajdonságokkal rendelkező mészlepedékes csernozjom talajon, egy halastó közelében beállított agrotechnikai kísérletünkben a tápanyagellátás és az öntözés hatását vizsgáltuk a szója fehérje- és olajtartalmának alakulására.

A kontroll és az N70+PK tápanyagszinteken a kísérletben szereplő 2 fajta átlagos fehérjetartalma öntözetlenül 35,04, illetve 35,07% volt, a tápanyag-ellátottsági szintek között nem tapasztaltunk lényeges eltérést (1. ábra). Öntözve az átlagos fehérjetartalom a kontroll kezelésben 38,39%-ra, az N70+PK-kezelés hatására 37,45%-ra növekedett. A legnagyobb fehérjetartalmat öntözetlenül (39,19%) és öntözve (38,77%) is az N140+PK tápanyagszinten értük el. Az öntözés hatására a két vizsgált fajta átlagos olajtartalma mindhárom tápanyag-ellátottsági szinten csökkent (2. ábra). Az olajtartalmat a növekvő műtrágyaadagok öntözetlenül kismértékben csökkentették, öntözve az N70+PK tápanyagszinten értük el a legnagyobb olajtartalmat (22,32%). Öntözés hatására a szójamag fehérjetartalma általában növekszik, olajtartalma többnyire kismértékben csökken, azonban a fajta-összehasonlító kísérletünkben 2018-ban 31 fajtát vizsgálva azt tapasztaltuk, hogy öntözés hatására a fajták többségénél csökkent a fehérjetartalom (20 fajta), és 19 fajta esetében csökkent az olajtartalom. A fajták átlagos fehérjetartalma öntözetlenül 36,94%, öntözve 36,48% volt. A fajták fehérjetartalma nagy változatosságot mutatott a fehérjetartalom-változást illetően. A többségnél a fehérjetartalom változása elenyésző volt öntözés hatására, míg egyes fajták fehérjetartalmának csökkenése a 2,5-3,0%-ot is meghaladta. 4 fajtánál a fehérjetartalom növekedése meghaladta az 1%-ot öntözés hatására. 2018-ban az olajtartalom a vizsgált 31 fajta átlagában öntözetlenül 22,68%, öntözve 22,56% volt (3. ábra). A vizsgált fajták átlagos olajtartalmát tekintve az eltérés nem számottevő az öntözött és az öntözetlen kezeléseket illetően, azonban az egyes fajták olajtartalmának változása között jelentős eltérést tapasztaltunk. A fajták többségénél a csökkenés kismértékű volt, azonban néhány fajta olajtartalma 1-1,63%-kal csökkent. Azoknál a fajtáknál, ahol az öntözés az olajtartalmat növelte, ez a növekedés kismértékű volt, azonban 3 vizsgált fajtánál az olajtartalom 1-2,6%-kal emelkedett.

A szója minősége szempontjából lényeges a betakarítás, valamint esetenként a lombtalanítás időpontjának körültekintő megválasztása. Az állomány egyenetlen érése, illetve a túl korán végzett lombtalanítás mennyiségi és minőségi veszteséget is okoz. Ennek oka a növény érésének biológiájában keresendő. Az érés utolsó 1015 napján a mag víztartalma 40-50% körüli értékről 12-15% körülire csökken. A magvak víztartalmának csökkenése mellett azonban a fehérje- és olajtartalom még növekszik. Ugyanazon növényen, sőt ugyanabban a hüvelyben sem azonos a magvak minősége. A magvak fehérjetartalma az alsó emeleteken magasabb, a csúcs irányába haladva a fehérjetartalom csökken, az olajtartalom pedig a fehérje- és olajtartalom között fennálló negatív korrelációnak köszönhetően a növény csúcsi részén a legmagasabb, az alsó hüvelyemeletek irányába csökken. Lényeges, hogy olyan fajtákat termesszünk, amelyeknél érés során az alsó hüvelyek nem nyílnak fel, nem pergetik a már megérett magvakat. Összefoglalóan megállapíthatjuk, hogy a szója minősége elsősorban fajtatulajdonság, azonban a termőterület talaja, az évjárathatás és az alkalmazott agrotechnika a termésmennyiségen kívül a szója minőségét is befolyásolja.

SZERZŐ:
DR. ÁBRAHÁM ÉVA BABETT ADJUNKTUS
DEBRECENI EGYETEM
MÉK, NÖVÉNYTUDOMÁNYI INTÉZET

Forrás: mezohir.hu

A szántóföldi gazdálkodás optimális tápanyag utánpótlásához elengedhetetlen a gazdálkodóktól a talajelemzés elvégzése. Ennek hiányában a vetésre nem megfelelően előkészített talajoknál jelentős hozamkiesésre lehet számítani

Milyen tápanyag van a talajban? Mit kell pótolni?

A legtöbb növénynek a nitrogén, a foszfor és a kálium (NPK) jelenti a 3 legfontosabb elemet. Ezek mellett még opcionálisan mérhető:

  • Ammónia
  • Magnézium
  • Vas
  • Réz
  • Cink
  • Molibdén
  • Mangán
  • Klór
  • Szulfát

 

A környezetkímélő tápanyag-gazdálkodás lényege, hogy a trágyákat, termésnövelő anyagokat kellő időben és mennyiségben kell kijuttatni, úgy, hogy a növények a tápanyagokat a lehető legjobban hasznosítani tudják. Ezáltal a gazdálkodás során bekövetkező tápanyagveszteségek és a környezeti elemek – elsősorban a vizek – ezzel összefüggő terhelése a lehetőségek szerint elkerülhető legyen!

Talajvizsgálatkor a leggyakrabban előforduló tápanyaghiányok és okozataik

- Nitrogénhiány: többségében az idősebb leveleken megjelenő vöröses színárnyalatok mindig a teljes növény világosabb zöld, vagy sárga színével járnak együtt.

- Foszforhiány: a gabonában a levélcsúcs nem merev és egyenes tartású, hanem kissé visszahajlik. Leggyakrabban az idősebb leveleken jelentkezik csak. A foszforhiány csökkenti a gabonafélék sütőipari minőségét, gátolja a keményítő beépülését a szemekbe.

- Káliumhiány: az idősebb, alsó leveleken a levelek csúcsától induló sárgulással kezdődik, később a levélerek közötti szövetek is elszáradnak.

- Vízhiány: a vízhiány – annak mértékétől függően – a szántóföldi növényállomány szervesanyag-termelését jelentősen csökkentheti, sőt a növény pusztulását is okozhatja.

- Nem megfelelő talaj pH-érték: a talaj pH szélsőséges irányokba történő elmozdulása közvetlen és közvetett módon, de minden esetben károsan befolyásolja a növények fejlődését.

Gyorstesztek a szántóföldön

A vetés előtti egyik legfontosabb elemzés a nitrogén-, foszfor-, káliumteszt. Azokon a területeken érdemes a talajmintavevő használata, ahol az előző évekről nitrogén maradvánnyal lehet számolni (vízlevezető összefolyások stb.), illetve ahol a téli csapadék, esőzés nem mosta ki az őszi trágyát. Vagy épp ellenkezőleg, ahol biztosan lemosta a tápanyagokat a termőterületről. Talajminta vizsgálatra a Talajnitrát mérő koffert, vagy az Amola mobil talajelemző koffert ajánljuk, mely megadja a maradék nitrogén mennyiségét a gyökérzónában, így a termelők meghatározhatják a termelendő kultúrához szükséges műtrágya mennyiségét.

Bővebben a talajmintavevőkről ide kattintva olvashat!

A talajmintákat legalább 30-60 centiméterről kell venni a talajmintavevővel. A későtavaszi teszteket vízállásos, illetve bő csapadékos területeken végzik. Ekkor elegendő 20-25 cm mélységből talajminta vizsgálatot végezni.

Ha nem csak a nitrogéntartalmat szeretnénk megállapítani, akkor az Amola agrár mobil laborral komplett talajvizsgálatot végezhetünk, vagy akár a már meglévő tesztjeinkhez a Stelzner koffer tartalmazza a szükséges eszközöket. A csomagok minden eszközt tartalmaznak, amelyre szükség van a talajvizsgálatnál, kivéve talajmintavevőt. A megfelelő minta-előkészítés után megállapíthatjuk a talaj összetételét a vizsgált makro- és mikroelemek függvényében.

Bővebben a talajkoffer, talajelemző szettről ide kattintva olvashat!

A talajnedvesség folyamatos vizsgálatának szükségessége

 

Egyik legfőbb lépésként nem árt, ha folyamatosan vizsgáljuk termőföldünk vízháztartását egy talajnedvesség mérővel. Egy aszályos időszak szemmel is jól látható károkat okoz minden terményben, de egyes kultúrák különös odafigyelést igényelnek a megfelelő talajnedvesség megtartása érdekében. Egy SMM-1 talajnedvesség-mérővel az éltető víz mennyisége 0-50%-os méréshatárig mérhető a termőföldben. Kompakt méretei és az elemes üzemeltetés hosszabb távú, mobilis használatot is lehetővé tesz, stabil és vízálló burkolata pedig megvédi a belső alkatrészeket a környezeti hatásoktól. A talajnedvesség mérő adattárolási funkciójával lehetőség van a maximum és minimum értékek visszakeresésére az adott munkafolyamatban, az SMM-1 talajnedvesség mérő használata pofonegyszerű!

Bővebben a talajnedvesség-mérőkről ide kattintva olvashat!

Komoly fejlődési rendellenesség tapasztalható, ha a terménynek nem megfelelő a termőtalaj pH-ja!A növények a talaj pH értékére is eltérően reagálnak: egyes kultúrák a kissé savas, mások a kissé lúgos kémhatást kedvelik. Ezért igen fontos tényező a termőföldek savasságának megállapítása egy pontos talaj pH mérővel. Általában a semleges talaj pH értéke (pH=6-7) felel meg a növénytermesztés általános feltételeinek. A hazai talajok pH értéke általában magas. Kétféle módon is mérhetjük ezt egy talaj pH mérő segítségével: a földből oldatot készítve, vagy akár az erre alkalmas talaj pH mérő szondáját óvatosan földbe szúrva közvetlenül is mérhetjük. Termesztett növényeink alapvetően a gyengén savanyú – semleges (pH 5,5-6,5) kémhatású talajokon termeszthetők jövedelmezően. A következő táblázat a fontosabb kultúrnövények termeszthetőségének pH által megszabott korlátait (termeszthetőségi tartomány) és az adott növény fejlődéséhez legideálisabb kémhatást (pH optimum) foglalja össze

Termeszthetőségi tartomány PH optimum
szója 5,5 – 7,0 6,3
kukorica 5,5 – 7,0 6,3
lucerna 6,5 – 7,9 7,5
napraforgó 6,0 – 7,5 6,8
árpa 5,2 – 7,8 7,2
cukorrépa 6,1 – 7,8 6,7
búza 4,1 – 7,8 6,6
borsó 5,0 – 7,6 6,6
repce 5,2 – 7,5 6,4
zab 4,0 – 7,3 5,8
burgonya 4,0 – 8,0 5,2
rozs 4,0 – 6,6 5,5
vörös here 5,0 – 7,2 6,7

Bővebben a talaj pH mérő műszerekről itt olvashat!

 

Szántás, talajlazítás előtt penetrométerrel meg kell vizsgálnunk a talajban hol vannak vízzáró rétegek, mennyire kötött talaj, tehát a talaj szerkezetét. Ennek hiányában a nem megfelelő eketalp beállítással rengeteg pénzt elpazarolhatunk talajműveléskor! A túlságosan kötött talajból a növények csak korlátozottan tudják felvenni a vizet és a tápanyagokat, illetve a levegő is kevésbé tud cserélődni a kötött talaj részecskéi között. A talaj a talaj szerkezete vizsgálatakor a tömörebb szintek mélységét is nagyon fontos megmérnünk, nem csak a tömörségi szintet! Egy modern gazdabot, azaz penetrométer segítségével könnyen megállapítható a talajvizsgálat során a talaj szerkezete és a zárórétegek mélysége is. A penetrométerrel a talajvizsgálat rendkívül gyors és egyszerű: a markolatánál fogva beleszúrjuk a talajba, majd a kijelzőről a színskála segítségével leolvashatjuk a talaj aktuális állapotát, a szárán pedig mérhetjük a rétegek mélységét. A talajtömörség vizsgáló két heggyel és ennek megfelelően két skálával van ellátva: keményebb talajhoz és puha talajhoz is. A talaj szerkezetének vizsgálatát a talajminta vétellel össze lehet hangolni.

Bővebben a penetrométerről ide kattintva olvashat!

Manapság a pontosság és a mobilitás elengedhetetlen a termőföld minőségének megállapításában, a tápanyagigény felmérésében. A korszerű műszerek a biztos növénytermesztés és az elismert gazdasági siker garanciái!

Halmai Géza
Termékszakértő
halmai.geza@agrogazda.hu

Agrogazda.hu Mérőműszerek Kft.
www.agrogazda.hu; E-mail: info@agrogazda.hu

Forrás: mezohir.hu

A szója jövedelmező fehérje- és olajnövény, de komoly odafigyelést igényel, tápanyagszükségletének kielégítése mind az elemek, mind a víz szempontjából döntő jelentőségű

A szója nagy mennyiségű, kiváló minőségű fehérjét és olajat tartalmaz. Átlagosan 40%-os fehérje- és 20%-os olajtartalmával jóval magasabb a fehérjetartalma, mint más, hagyományos szántóföldi kultúrák növényeinek. Pillangósként a gyökérgümőkön élő Rhizobium-baktériumok által megtermelt nitrogént hasznosítja.

1. kép: a kálium növeli a szója ezerszemtömegét (mindkét oldalon 60 szem látható) 50 kg K2O/ha hatása a szójára, forrás: IPI-NCSR Projekt, India

 

2. kép: Különböző tápelemhiány tünetek szójánál, forrás: K+S KALI GmbH

 

3. kép: A gyökérgümőkön élő Rhizobium baktériumok szerepe: (balra) megfelelően fejlődött állomány, (jobbra) fejlődésben elmaradt állomány, forrás: Ohyama és társai (2013)

 

4. kép: Káliumhiány szóján, fotó: K+S KALI GmbH

 

5. kép: Magnéziumhiány szóján, fotó: IPNI, L. Prochnow

 

6. kép: Foszforhiány szóján, fotó: K+S KALI GmbH

 

7. kép: Nitrogénhiány szóján, fotó: K+S KALI GmbH
A szója speciális gyökérnedveket képes kiválasztani, amivel mobilizálni tudja a talaj azon foszforformáit, amelyek a hagyományos szántóföldi növényeink számára nem mobilizálhatóak. A káliumot és magnéziumot karógyökerén és szerteágazó mellékgyökerein keresztül veszi fel. A nitrogénszükségletének 70-80%-át a gümőbaktériumain keresztül fedezi. A gümőbaktériumok (Rhizobiumok) a 6-7-es pH-t kedvelik, ebben a kémhatású tartományban vehető fel több mikroelem is. Azonban érzékenyen reagálnak a nitrátra, ezért erre figyelni kell vetés előtt, érdemes talajvizsgálattal ellenőrizni.

Ha a baktériumoltással problémák adódtak, ill. ha tavasszal tartósan nedves időjárás volt, a vetés kivilágosodhat, ez esetben 40-60 kg/ha ammónium formájában adott nitrogén segíthet, vagy levélen keresztül is juttathatunk ki nitrogént, ami nem érinti közvetlenül a Rhizobiumokat, ekkor adjunk a levélen keresztül egyidejűleg magnéziumot és ként is 10 kg/ha adagban EPSO Top-pal, és 10-20 kg/ha karbamidot.

A virágzás idején szintén megnövekszik a szója nitrogénigénye, ekkor figyeljünk, hogy ne adagoljuk túl, mert a túladagolással azt érjük el, hogy elhúzódik a virágzás és az ezerszemtömege csökkenni fog.

Hektáronként 3 tonna terméssel kb. 57 kg foszfort (foszfor-pentoxidban kifejezve), 76 kg káliumot (kálium-oxidban kifejezve), 9 kg kálciumot (kalcium-oxidban kifejezve), 38 kg ként (kén-trioxidban kifejezve) és 12 kg magnéziumot (magnézium-oxidban kifejezve) vonunk ki a talajból.

 

8. kép: Kénhiány szóján, fotó: K+S KALI GmbH

 

9. kép: Bórhiány szóján, fotó: Arkansas Soybean Production Handbook, Chapter 5

 

10. kép: Mangánhiány szóján, fotó: Arkansas Soybean Production Handbook, Chapter 5
A szója viszonylag kevés vizet igényel termesztése során, azonban a virágzás idején érzékenyen reagál a szárazságra. Különösen a virágzás kezdetén, annak az első 3 hetében kritikus a megfelelő vízellátás számára. Megfelelő káliumpótlással azonban segíthetünk a szárazság miatti stresszhelyzet kezelésében, mivel jobb lesz a szója vízhasznosítása. A szója különösen az intenzív növekedés idején igényli a nagyobb kálium mennyiséget. Káliummal a termés és a minőség fokozható:

- kálium szükséges számos enzim aktiválásához, a vízháztartás szabályozásához, az asszimiláták elszállításához (pl. cukrok, keményítők);

- a kálium nélkülözhetetlen a szénhidrát- és fehérje-anyagcseréhez és ezáltal a vegetatív növekedés, becő- és magképzéshez;

- megfelelő kálium-ellátással csök kenhet az érés előtti becőkártételek mennyisége;

- a káliumnak pozitív hatása van a szója minőségére is: kevesebb az aszott, ráncos, elszíneződött szem.

A szója kénigénye 25-30 kg S/ha. A kedvező N:S arány 7:1-hez. A tavaszi mineralizáció során ugyan szabadul fel valamennyi kén a talajból, de ezt a kénigényt nem tudja kielégítően fedezni, különösen szárazság és alacsony hőmérséklet esetén.

A talajból felvett kén először a baktériumok fehérjéinek felépítésére fordítódik, majd másodsorban a növényi fehérjeképzésre.

A szója gyors növekedésű növény, nagy zöldtömeget fejleszt, ezért megfelelő magnéziumellátásra szorul a levélképzéshez és a fotoszintézishez. A magnézium egyebek mellett biztosítja a növényen belül a megtermelt asszimiláták szállítását, így:

- a Rhizobiumok ellátását és ezáltal a növény nitrogén-felvételét;

- a gyökerek ellátását és ezáltal a növény tápanyag- és vízfelvételét;

- a szemek telítődését és ezáltal az ezerszemtömeget.

Továbbá magnézium szükséges az olajok és fehérjék képzéséhez is.

 

Sikeres szójatermesztést kívánunk!

Dr. Zsom Eszter zsom.eszter@t-online.hu

Forrás: agraragazat.hu

2018-ban a szója növény került vizsgálatra a NÉBIH és a Magyar Talajbaktérium gyártók és -Forgalmazók Szakmai Szervezete közreműködésével. Már harmadik éve folyik a baktériumkészítményekkel kezelt és kezeletlen (kontroll) területek eredményeinek összehasonlítása a NÉBIH pécsi Növény-, Talaj- és Agrárkörnyezet-védelmi Igazgatóságán. 2016-ban a kukorica, 2017-ben az őszi árpa bizonyította a talajoltás hozamnövelő és termésminőség javító hatását

Magyarországon célkitűzés, hogy a hazai termelésű, GMO-mentes szója minél inkább itthon kerüljön felhasználásra. Jelenleg jelentős része kerül külpiacra, míg több százezer tonna GM-szóját, extrahált szójadarát importálunk. Az import szója fehérjetartalma általában meghaladja a hazai szójáét. Tehát nemcsak a termés mennyiségét, hanem a minőségét is javítani szükséges.

Az eredményekről

A vizsgálat a Baranya megyei Szalántán, Ramann-féle barna erdőtalajon, 90 m2-es parcellákon, 4 ismétlésben, véletlen blokk elrendezésben valósult meg. A tápanyag-utánpótlási és növényvédelmi munkálatok egységesen, egy időben, azonos technológiával történtek.

Termésátlagok

A termésátlagoknál látható, hogy mindegyik talajoltóval kezelt terület terméseredménye meghaladja a két kontrollt, illetve a standard nitrogénkezelést. Az egyes oltóanyagok különböző mértékben növelték a termésátlagot, a növekmény a kontroll átlagokhoz viszonyítva 14,7-34,3% között mozgott.

A gümőszám alakulása

A pillangósvirágú növények biológiájából ered, hogy gyökérzetükön szimbionta Rhizóbium baktériumok nitrogénkötő gümőket képeznek. Minél több és jól, aktívan működő gümő található a növényen, annál egészségesebb és dinamikusabb fejlődésű a szója. A gümőzés nagyban meghatározza a termésátlagokat is. Az oltóanyaggal kezelt növényeknél átlag 12,61 és 14,18 darab gümőt találtak növényenként, míg a kezeletlen átlag csak 11,05 darab volt.

Nyersfehérje-tartalom

A nyersfehérje-tartalom a két kezeletlen terület átlagaival összehasonlítva 82,9-178,4% közötti emelkedést mutatott a különböző oltóanyagokkal történt kezelésekben. Megjegyezzük, hogy a Standard N tábla termésének nyersfehérje-tartalma – egy kivétellel –felülmúlta az oltóanyaggal kezelt területek eredményét.

A fenti grafikonok azt mutatják, hogy a talajoltó baktériumokkal, illetve Bradyrhizobium törzset tartalmazó oltóanyagokkal kezelt területeken a szója jelentősen jobban teljesített mind mennyiségi, mind minőségi szempontból, mint a kezeletlen táblákon.

Dr. Pénzes Éva

Forrás, és grafikonok: agraragazat.hu

GÉTA Kft.

Csévharaszt, Nyáregyházi út 51.
Tel.: +36 29 493 005
Fax: +36 29 493 537
GPS: É 47 29 156, K 19 44 403
Ügyvezető: Márta Barnabás
E-mail: martabarnabas@gmail.com
Mottónk: "Semmi sem lehetetlen!"

Géta fotóalbum
KERESÉS
Világpiaci árfolyamok

Szójabab

Szója élő árfolyam

Forrás: www.finviz.com


Búza

Búza élő árfolyam

Forrás: www.finviz.com


Kukorica

Kukorica élő árfolyam

Forrás: www.finviz.com


Ezen információk csupán tájékoztató jellegűek!!!

Géta mini galéria
monex-75 extruderrfej szója extruder üzem szója felbontó daráló traktorhajtású Monex extruder traktorhajtású Monex extruder szaraz_kutyatap_gyarto
Extruder kategóriák
Extruder archívum
Agroinform közösség